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Abstract
An introduction is given to structure factor determination by means of neutron diffraction. The
method of isotopic substitution, which allows us to separate the partial correlation functions, is
also presented. Suitable instruments, the experimental procedures, and corrections are
described. Other less-conventional techniques such as isomorphic substitution and anomalous
dispersion are also discussed. Finally, examples of the structure factor determination in
chalcogenide, molecular, telluride and phosphate glasses are discussed in order to illustrate the
usefulness of the neutron diffraction technique.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this paper an elementary introduction to the method of
structure factor determination by neutron diffraction will
be given. In particular, it will focus on the structural
characterization of amorphous materials. In an ideal case, the
structure of a given system is completely determined when one
is able to know the equilibrium position of all atoms. This
is quite straightforward in the case of crystalline solids, for
which these equilibrium positions are not only well defined but
also periodically repeated. For these systems the diffraction
experiments produce diffractograms with the characteristic
Bragg reflexions evidenced by well defined thin peaks at
given angular positions, corresponding to the scattering vector
matching a vector in the reciprocal lattice.

In the case of an amorphous material, there are no longer
clearly defined equilibrium positions. Instead of having well
defined atomic positions, one must refer to a distribution of
atoms as a function of distance, i.e. to the probability of finding
an atom at a distance r provided there is another atom at
the origin. The so-called pair distribution function g(r) is
proportional to this probability and it is the function that one
usually intends to obtain from the experiment. A schematic
example of this function is shown in figure 1, where the
main characteristics of a general pair distribution function are
evident. Firstly, this function must be strictly zero below a
given distance, because of the atomic repulsion between atoms.

Figure 1. Schematic pair distribution function. This function must
be null below a given distance related to the atomic repulsion, and
the position of the first maximum (r0) corresponds to the minimum in
the pair potential.

Secondly, the function should exhibit alternating maxima and
minima following the so-called coordination shells. Finally,
the oscillations should be more or less damped (for a less or
more ordered system, respectively) and should tend to unity
for long distances, where the correlation with the atom at the
origin is completely lost.

0953-8984/08/244109+09$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/24/244109
mailto:cuello@ill.eu
http://stacks.iop.org/JPhysCM/20/244109


J. Phys.: Condens. Matter 20 (2008) 244109 G J Cuello

The objective of this article is to show how to obtain
this function from the experimentally determined intensity
as a function of the scattering vector. Section 2 will be
devoted to the fundamentals of neutron diffraction. In section 3
we shall discuss some of the experimental issues that we
usually face to extract the correlation functions, and we shall
present the available instruments suited for structural studies
on amorphous materials. Finally, in section 4 we shall discuss
examples where these methods have been successfully applied
to give an insight into the structure of glassy systems.

2. Fundamentals

In a standard scattering experiment, we measure the intensity
as a function of the scattering angle 2θ (or time of flight in the
case of pulsed sources) and energy exchange h̄ω, related to the
double differential cross section as follows:

I (2θ, ω) = C�0ε(k
′)

d2σ

d�dω
(2θ, ω), (1)

where C�0 represents the flux of incident particles (neutrons)
and C is a normalization constant; ε(k ′) represents the
efficiency of the detection device. This cross section is itself
related to the microscopic properties of the system,

d2σ

d� dω
(2θ, ω) = N

k ′

k

σ

4π
S( �Q, ω), (2)

where N is the number of scatterer particles; �k and �k ′ are the
initial and final wavevectors of the probing particles ( �Q =
�k − �k ′ is the scattering vector); σ is the scattering cross
section; and finally, S( �Q, ω) is the dynamical structure factor,
the magnitude which contains all the information about the
structure and dynamics of the system.

2.1. Monatomic systems

For a set of N identical atoms of a general system, we are able
to obtain the dynamical structure factor if we know the position
of all atoms, �ri (t) with i = 1, . . . , N , for all times.

S( �Q, ω) = 1

2π

∫ +∞

−∞
dt e−iωt 1

N

N∑
i, j

〈
e−i �Q·�ri (0)e−i �Q·�r j (t)

〉
,

(3)
where the brackets represent the thermal average over the
scatterer centers. The microscopic density of the system can
be expressed as the sum of Dirac’s deltas centered on each
scatterer,

ρ(�r , t) =
N∑

i=1

δ (�r − �ri(t)) . (4)

Then, the dynamic structure factor is

S( �Q, ω) = 1

2π

∫ ∫
d�r dt ei( �Q·�r−ωt)G(�r , t), (5)

where the function G(�r, t) is a time-dependent correlation
function (the Van Hove correlation function) [1], which is
related to the probability of finding a particle at position �r and

time t , provided that another particle was at the origin at t = 0.
This correlation function can be written as a function of the
microscopic density

G(�r , t) = 1

N

∫
d�r ′

〈
ρ(�r ′, 0)ρ(�r + �r ′, t)

〉
. (6)

The double differential cross section can be separated into
two terms

d2σ

d� dω
(2θ, ω) = N

k ′

k

(σcoh

4π
S( �Q, ω) + σincoh

4π
S( �Q, ω)

)
,

(7)
the coherent part containing all the correlations, and the
incoherent one just containing the auto-correlations (an atom
with itself). The latter gives information on diffusive
motions and internal dynamics (molecular vibrations). The
inelastic part of the coherent term gives information about
collective dynamics, and the elastic part contains the structural
information. These cross sections, σcoh = 4πb2

coh and σincoh =
4πb2

incoh, can be calculated from the tabulated values for the
scattering lengths [2]. In this work we are focused in the
structure of the system and the only important term is the
coherent one.

In diffraction experiments the detectors integrate all
the neutrons regardless of their energy exchanges with the
sample, i.e. there is no discrimination in the final energy. In
mathematical language, this is equivalent to integrating the
dynamical structure factor over all energies, so

S( �Q) =
∫ +∞

−∞
dω S( �Q, ω) =

∫
d�r ei �Q·�r G(�r , 0). (8)

In fact, from the experimental point of view, this is an
approximation (the so-called static approximation) because of
the reduced energy exchange in a real experiment. Under
this approximation, the correlation function is evaluated at
t = 0, which is equivalent to a snapshot of the system. In
this case, the correlation function has a very simple expression;
it is just G(�r , 0) = δ(�r ) + ρg(�r), i.e. a delta function at
the origin representing the autocorrelation plus the space-
dependent density variations.

Then the static structure factor can be easily calculated,

S( �Q) = 1 + ρ

∫
d�r ei �Q·�r g(�r) (9)

or written in a slightly different way,

S( �Q) − 1 = ρ

∫
V

d�r [g(�r) − 1
]

ei �Q·�r , (10)

where we have subtracted a null term representing no scattered
neutrons. These neutrons just pass through the sample without
any interaction and they are not registered by the detector.

It is useful to define the structure factor as F( �Q) =
S( �Q) − 1 and the pair correlation function as G(�r) =
4πρr [g(�r) − 1]; the function F( �Q) is the Fourier
transformation of G(�r)/4πr ,

F( �Q) =
∫

V
d�r G(�r)

4πr
ei �Q·�r , (11)
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and vice versa,

G(�r)

4πr
= 1

(2π)3

∫
d �Q F( �Q)e−i �Q·�r . (12)

Here it is worth noticing that the pair correlation function G(�r)

is not exactly the Van Hove’s correlation function G(�r , 0) and
they should not be confused with each other. The relationship
between these two functions is G(�r , 0) = δ(�r) + ρ +
G(�r)/4πr .

In terms of the static structure factor and the pair
distribution function, this can be written as

ρ
[
g(�r) − 1

] = 1

(2π)3

∫
d �Q

[
S( �Q) − 1

]
e−i �Q·�r . (13)

As usual in disordered systems, it can be assumed
that the scattering is isotropic and the three-dimensional
Fourier transformations can be reduced to one-dimensional
sine transformations as follows:

QF(Q) =
∫ ∞

0
G(r) sin(Qr) dr (14)

and

G(r) = 2

π

∫ ∞

0
QF(Q) sin(Qr) dQ. (15)

In terms of the isotropic versions of the static structure factor
and the pair distribution function, these integrals can be written
as

S(Q) − 1 = 4πρ

Q

∫ ∞

0
r
[
g(r) − 1

]
sin(Qr) dr (16)

and

g(r) − 1 = 1

2π2ρr

∫ ∞

0
Q [S(Q) − 1] sin(Qr) dQ. (17)

Figure 2 shows a real example of the structure factor
and its corresponding pair distribution function for a binary
alloy (Al0.878Si0.122) at 1373 K (i.e. in the liquid state). At
a first glance, one can see that the structure factor goes to
unity for high Q values, as predicted by equation (16). Using
mechanical statistics arguments, it can be shown that ρkBT χT

is the low-Q limit for the structure factor [4], where χT is
the isothermal compressibility. These two limiting values
are very useful for normalization purposes to obtain correct
values for coordination numbers. There are some key features
in the structure factor which can be translated easily to the
pair distribution function. The position of the first intense
diffraction peak Qp in S(Q) is related to the period (2π/Qp)
of oscillations in the real space, i.e. with the spacing of the
coordination shells. For this example, the position of the first
diffraction peak is (2.67±0.03) Å

−1
, corresponding to a period

in the real space of 2.35 Å, which must be compared with
the experimental value of ≈2.4 Å. The width of this peak,
�Qp, gives information on the coordination length (2π/�Qp),
i.e. to what extent the system is ordered. In this case the width
of the first peak is 0.75 Å

−1
, giving a coordination length of

≈8.5 Å
−1

, which matches very well with the damping of the

Figure 2. (a) The static structure factor of an AlSi liquid alloy as
obtained from neutron diffraction experiments [3]. (b) The
corresponding pair distribution function as obtained by Fourier
transformation of the structure factor.

oscillations in the pair distribution function (see figure 2(b)).
This g(r) function has been obtained by Fourier transformation
of the structure factor following equation (17). As expected, it
tends to unity for long distances, where the density fluctuations
have lost all correlation with the reference atom at the origin.
For very short distances, where a null function is expected,
some small oscillations appear; they are not related to real
correlations, but are produced because of the finite Q-range
of any real experiment. These oscillations can be reduced
using window functions as will be discussed later, but small
oscillations in this region give an assessment of the goodness
of the experimental data.

When working with correlation functions in real space,
there are other related functions that are very useful. One of
them is the pair correlation function G(r) = 4πρr [g(r) − 1],
the one-dimensional version of that defined by equation (11).
Figure 3(b) plots the pair correlation function corresponding
to the g(r) plotted in part (a) of the same figure. It is
worth noticing that G(r) is a density-independent function
(i.e. the knowledge of the density is not necessary to derive this
function from experimental data), but provides an easy way to
measure the density of the system (this function is also known
as the density function). Due to the fact that g(r) must be null
in the repulsion region, G(r) must have a linear dependence
on r and the slope must be proportional to the density; in the
case of the example shown in figure 3(b) the slope corresponds
to an atomic density of 0.050 54 atoms Å

−3
. This property

is very useful when the sample is maintained under extreme
conditions (e.g. high pressure or high temperature [5, 6]) and
the conventional methods for density determination cannot be
applied.
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Figure 3. Correlation functions in real space. (a) Pair distribution function g(r); (b) pair correlation function G(r); (c) radial distribution
function RDF(r); (d) T (r) = 4πρrg(r).

The radial distribution function RDF(r) = 4πρr 2g(r) is
the number of atoms per unit length on the surface of a sphere
of radius r . With such a definition, the integral of this function
directly gives the number of atoms in a given coordination
shell (the coordination number), as shown in figure 3(c).
Occasionally it is better to use the function T (r) = RDF(r)/r ,
which produces more symmetrical peaks, allowing the use of
Gaussians as the functional shape for fitting the coordination
shells (figure 3(d)).

2.2. Multiatomic systems

In the case of a system constituted of n different atomic species,
the structure factor can be generalized as follows:

b̄2 F(Q) =
n∑

α=1

n∑
β=1

cαcβbαbβ Fαβ(Q), (18)

where Fαβ(Q) are the partial static structure factors (ne =
n(n + 1)/2 independent functions in total) and b̄ is the mean
value of the coherent scattering length

b̄2 =
n∑

α=1

n∑
β=1

cαcβbαbβ. (19)

The main problem that an experimentalist should face is
the fact that all the partial structure factors are added up in
the same expression, i.e. a single diffractogram is measured
containing all the partials that one would like to extract
individually. To solve the problem, a set of ne independent
linear equations is needed. From a mathematical point of view,
the problem can be solved just by changing the coefficients
in equation (18), but in fact this must done carefully. If
the compositions, cα , change, the sample is changing, and
this is unacceptable. The only possibility is changing the
scattering length included in the weighting factors. This can

be done using the technique of isotopic substitution under the
assumption that the structural properties of the system are not
changed by changing isotopes. There is also the possibility
of using the technique of anomalous dispersion when one of
the elements in the system has a resonance in the appropriate
energy range, as has been recently shown [7, 8].

The linear system (18) can always be expressed as a
matricial equation, �FS(Q) = A �FP(Q), where A is a ne ×
ne matrix and �FS(Q) and �FP(Q) are two vectors of ne

components, containing the independent measured structure
factors and the partial correlations, respectively. As an
example, for a binary system ne = 3 and equation (18) has
the form

b̄2

⎛
⎝

FS1(Q)

FS2(Q)

FS3(Q)

⎞
⎠ =

⎛
⎜⎝

c2
αb2

α1 c2
βb2

β1 2cαcβbα1bβ1

c2
αb2

α2 c2
βb2

β2 2cαcβbα2bβ2

c2
αb2

α3 c2
βb2

β3 2cαcβbα3bβ3

⎞
⎟⎠

×
( Fαα(Q)

Fββ(Q)

Fαβ(Q)

)
, (20)

where FS1(Q), FS2(Q), FS3(Q) are the measured structure
factors for three different isotopic compositions of the same
system, and Fαα(Q), Fββ(Q), Fαβ(Q) are the sought partial
structure factors.

Because the matrix A must be inverted, its determinant A

is an important parameter which should be considered when
the experiment is designed: the bigger the determinant, the
smaller the uncertainties in the final results. Bigger values
of this determinant are obtained by choosing isotopes with
good contrast, i.e. with appreciably different scattering lengths
(see [2]), or combining neutron and x-ray diffraction data [9].

Using equation (18) and the Fourier transformation (15),
it is possible to generalize the expressions for the correlation
functions in real space. In particular, the total correlation
function G(r) can be written in terms of the partials Gαβ , and
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the expression is equivalent to equation (18) where F functions
are replaced by G functions.

Even when isotopes are available, it is not always possible
to prepare all the samples required to obtain the complete set of
correlation functions. This is particularly true for systems with
more than two atomic species. In this case we can apply the
first difference method with isotopic substitution. If only one
element can be substituted (γ ), we can write equation (18) for
each of the two samples: one with the γ 1 isotope and the other
with the γ 2 isotope. Taking the difference between these two
equations, all the correlations where the substituted atom is not
included are canceled. In this way, we can write the following
expression for the first difference spectrum:

b̄2�Fγ (Q)

c2
γ (b2

γ 1 − b2
γ 2)

= Fγ γ (Q) +
∑n

α �=γ cαbα Fαγ (Q)

cγ (bγ 1 + bγ 2)
, (21)

where it has been possible to separate the γ –γ correlation and
the second term is usually small.

Under given circumstances it is possible to perform
a second substitution, the atomic species δ, for example.
Then equation (21) can be re-written isolating the γ - and δ-
correlations, for the two isotopes δ1 and δ2. The difference
of these two first difference spectra contains only the γ –δ

correlations

Fγ δ(Q) = b̄2�2 Fγ δ(Q)

cγ cδ(bγ 1 − bγ 2) (bδ1 − bδ2)
, (22)

where �2 Fγ δ(Q) represents the experimental double-difference
spectrum.

3. Experiments

In section 2 the fundamentals of neutron diffraction have been
presented. This section is devoted to showing what procedures
are necessary to correct the experimental data. These
corrections intend to take into account the approximations
made to extract the data.

3.1. Corrections

There are two kind of corrections to be performed on the
experimental data: one set coming from the experimental
conditions and the other from the theoretical assumptions made
to derive the structure factors. There are more or less standard
programs to perform these corrections, for example the code
CORRECT [10].

The main experimental correction is the background
subtraction, for which it is necessary to measure the empty
cell, the empty instrument and a sample-like absorbent. The
knowledge of dimensions and materials of each component in
the beam allows the calculation of the absorption coefficients
and the extraction of the background-corrected spectrum for
the sample. In the case of cylindrical geometry, these
absorption coefficients can be calculated using the Paalman
and Pings corrections [11]. Because of the finite size of the
sample, there is always a probability that a neutron has more
than a single interaction in the sample. This contribution,

known as multiple scattering, must be evaluated and subtracted
from the experimental data. This contribution can be evaluated
using the Blech and Averbach correction [12]. For some kinds
of molecular systems, for which a model of interaction between
the neutrons and the scatterers can be used, it is better to use
numerical simulations to evaluate the absorption/background
and multiple scattering corrections [13].

The last experimental correction to perform is the
correction for the instrumental resolution. Knowing the
instrumental resolution, one can attempt to extract the structure
factor by performing a deconvolution process, but this is a
difficult task. Instead, one can measure a standard vanadium
sample (an almost incoherent scatterer), which should give a
flat diffractogram. In fact, this diffractogram is not flat because
of the resolution of the instrument. Then the resolution-
corrected data are obtained by taking the ratio between the
sample diffractogram and that for vanadium. In doing this, and
because the cross section of vanadium is well known, the data
can be normalized to an absolute scale.

Finally, the last correction that must be performed
concerns the inelasticity effects, originating from the fact that
in a real experiment the scattering is not completely elastic, as
assumed for the diffraction case. It is evident that this effect
is more important for light atoms than for heavy ones and it is
evidenced as a decrease in the intensity with Q. This can be
described with a mass expansion of the cross section [14] or, in
a more empirical way, by an even polynomial in Q.

Once the experimental double differential cross section
has been converted into the total structure factor, the Fourier
sine transform (equation (17)) must be done. In fact, due
to the finite Q-range of any experimental diffractogram there
will be always a high frequency noise in the pair distribution
function (see the oscillations below 2 Å in figure 2). This effect
can be reduced using window functions like that proposed by
Lorch [15].

3.2. Instruments

When studying the structure of disordered materials there
are basically two ways of determining the structure factor.
The first one is using a two-axis diffractometer, which is
usually installed in a steady state (reactor) neutron source. In
this case, the Maxwellian distribution of neutron energies is
monochromatized, focused on the sample and detected as a
function of the scattering (2θ ) angle (figure 4(a)). By means
of the Bragg’s law (Q = 4π/λ sin θ ), valid in the static
approximation, the angular scale can be changed into the
modulus of the scattering vector scale.

The second way to determine the structure factor is by the
time-of-flight technique, which is available in pulsed neutron
sources. In this case, a pulsed white beam is sent from the
source to the sample (figure 4(b)). The scattered beam is then
counted by a detector placed at a constant scattering angle as a
function of time of flight (t). If the total flight path is L, and
using again the Bragg’s law (Q = 2mL/h̄t sin θ , where m is
the neutron mass), it is possible to change from t- to Q-scale.

There are several instruments dedicated to the study of
amorphous materials. For instance, at the Institut Laue
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Figure 4. (a) Experimental layout of a two-axis diffractometer,
where the beam is continuous and monochromatic and the
diffractogram is collected as a function of the scattering angle.
(b) Experimental layout of a time-of-flight diffractometer, where the
beam is pulsed and white and the diffractogram is collected as a
function of the time of flight.

Langevin (ILL) there is a large suite of instruments for
structural and dynamical studies on non-crystalline solids [16].
In particular, for structural studies the available instruments in
steady state sources are D4 [17] (ILL) and 7C2 [18] (LLB).
The pulsed-source neutron diffractometers are SANDALS [19]
(ISIS), GEM [20] (ISIS), HIT [21] (KENS) and GLAD [22]
(IPNS).

4. Selected examples

These examples intend to illustrate some of the above
discussed methods. First, a total structure factor determination
is presented, where the combination of neutron diffraction
and numerical simulation allows the obtention of structural
information. Then an example of H/D substitution is given,
where the intermolecular structure of glassy alcohols is
derived. The structure of telluride glasses is derived combining
neutron and x-ray diffraction and using the advantages of each
technique for extracting information on the partial structure
factors. Finally, we present an example where the isomorphic
substitution technique allows us to study the short-range order
of rare-earth ions in phosphate glasses.

4.1. Chalcogenide glasses

This is a case where a simple total structure factor
determination has been performed without any isotopic
substitution. The correlation distances in chalcogenide glasses
were studied by means of a neutron diffraction experiment
on the system Agx(Ge0.25Se0.75)100−x with different silver
contents (x = 15 and 25 at.%) [26]. This is a total structure
factor determination, where the changes in the structure of the

Ge–Se network upon doping with Ag were determined. The
total structure factor S(Q) for the two samples was measured at
the two-axis diffractometer D4 (ILL) [17]. These two structure
factors, where all the correlations are mixed in a single
curve, were Fourier transformed to obtain the total correlation
functions and their corresponding radial distribution functions.
Because there is no isotopic substitution, the interpretation
of the correlation functions must be done with the help
of numerical simulations. In this way it was possible to
identify the presence of both Se–Se and Ge–Se correlations
in the first peak of the radial distribution functions. The
results are consistent with a structure that contains both
GeSe4/2 tetrahedra and Se–Se bonds and Ag bonded to Se
in a triangular coordination. The observed changes with
temperature in the Ag–Ag correlation peak (at 3 Å) are in
agreement with increased diffusion of silver throughout the
glasses, even though they are much less drastic than those
reported previously for a similar study on Ag25(Ge0.25Se0.75)75

glass at higher temperatures.

4.2. Glassy alcohols

This is an example of a simple experiment where the total
structure factors for both isomers of propanol were determined
by neutron diffraction [23]. This example serves to illustrate
how minor details of chemical structure may induce changes
in ordering patterns at scales well beyond those where one
would expect such changes to be strongest, that is at scales
involving chemical and topological short-range order: in this
case, the structures of the two isomers of propyl alcohol
(CD3CD2CD2OD and CD3CDODCD3, 1-propanol and 2-
propanol, respectively), which differ by the location of the
hydroxyl group (figure 5). Such a minute difference in
molecular structure results in large changes in basic thermal
properties, such as the crystal melting points (Tm = 148 and
185 K, respectively), the glass-transition temperatures (Tg =
98 and 115 K) and even the macroscopic liquid densities, that
differ by some 2%.

The intermolecular structure of both glasses shows that
the oscillations versus a rescaled variable (rescaled by a
characteristic distance) are fully in phase. In other words, the
intermediate range order is understandable in terms of packing
of spherical entities defined by a characteristic radius rm. Such
positional correlations, which are fully identifiable with those
of the molecular centers of mass, extend to a far larger extent
than those of orientational origin, which tend to die out for
distances just above rm. Evidence of order even beyond the
intermediate range has been observed in other glasses [24],
simpler than these molecular glasses.

The total pair static correlation functions for 1-propanol
show a very clear phase relationship between the oscillations
of glass and crystal, indicating that the short-range structures
of glass and crystal should show some resemblance. On
the other hand, those for 2-propanol show rather disparate
patterns. Such distinct behaviors were studied by means of
high-resolution powder diffraction on the crystal structures of
both isomers [25].
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Figure 5. The two isomers of propanol: (a) 1-propanol and (b) 2-propanol.

Figure 6. (a) The static structure factor of glassy (Li2O)2–(TeO2)2 − V2O5 as obtained from x-ray (solid line) and neutron (dashed line)
diffraction experiments [28]. (b) The corresponding pair correlation functions (solid line, x-rays; dashed line, neutrons).

4.3. Tellurite glasses

Tellurium dioxide (TeO2 or paratellurite) is a conditional glass
former, which means it will form a glass with small molar%
additions of a second compound such as an oxide or halide.
This is the case of the binary TeO2–V2O5 system, exhibiting a
wide glass-forming region [27] and semiconducting properties
with relatively high conductivity (Te2V2O9 exhibits the highest
conductivity). The ternary M2O–Te2V2O9 (M = Li, Na, Ag)
system presents a continuous change from the pure electronic
conductivity (Te2V2O9) to a mainly ionic conductivity for high
M2O content. In the following example, neutron and x-ray
diffraction techniques are combined to study the local structure
of the ternary Li2O–TeO2–V2O5 system [28].

Three samples in the ternary (Li2O)x –(TeO2)2–V2O5

system with x = 0, 1 and 2 were measured. The
neutron diffraction experiments were conducted on the D4
two-axis diffractometer at ILL [17] and the x-ray experiments
were performed with a conventional laboratory diffractometer.
Figure 6(a) shows the structure factors as obtained by neutron
and x-ray diffraction for the glass with the highest Li content,
i.e. Li4Te2V2O11, and figure 6(b) shows the corresponding pair
coordination functions.

The joint neutron and x-ray scattering experiments
allow us to obtain information about partial Te–O and V–
O correlations for the Te2V2O9 glass. Namely, the Te–O
contribution can be estimated from the neutron data, for which
the V–O component is very weak (the coherent scattering
length is almost null). Then the V–O nearest-neighbor inter-
atomic distances and the coordination numbers can be derived
from the x-ray data, fixing the parameters for Te–O obtained

from the neutron data in the fitting procedure. However, when
the Li–O correlations are merged in the nearest-neighbor peak,
a few additional assumptions about some of the parameters
have to be made. The deconvolution of total correlation
function in the case of Li-based glasses is more difficult. In the
case of neutron scattering, even if the vanadium contribution
can be negligible, the lithium one is important and negative.
Thus it is difficult to refine Te–O and Li–O contributions
together because they are correlated: an increase of one of
them is compensated by the increase of the other one, and no
change is observed in the experimental data. In this case the
use of x-ray data is crucial, because the Li contribution to the
correlation function is negligible, and V–O and Te–O are both
positive. In this manner, the fitted results for V–O and Te–O
correlations are kept fixed when Li correlations are refined in
the neutron data. All the parameters are finally refined to obtain
convergence and the result is checked with the x-ray data. Such
a procedure is applied until a convergence is reached. More
details of this method can be found in Rozier et al [28].

4.4. Anomalous scattering

Recently, the first successful complete neutron diffraction
anomalous dispersion experiment was performed in order to
investigate the role of the Sm3+ ions in the structure of
vitreous Sm2O3·4P2O5 [7, 8]. The ideal form of this technique,
which employs the wavelength dependence of the real and
imaginary parts of the neutron scattering length close to an
absorption resonance, is used and involves measurements at
two pairs of wavelengths: the real part of the scattering length
is varied, keeping the imaginary part constant, and then the
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Figure 7. (a) The corrected diffraction patterns corresponding to Sm2O3·4P2O5 at two wavelengths: 0.9 Å (top) and 0.45 Å (bottom).
(b) The real-space correlation functions, T (r), for the same two wavelengths and their corresponding difference correlation function, �T (r),
as obtained by varying the imaginary part of the neutron scattering length.

imaginary part is varied, keeping the real part constant. If
A denotes the element with the isotope (149Sm) having the
absorption resonance and X any other element present in
the sample, the first measurement can be used to extract the
A–A + A–X or A–A + X–X contribution to the real-space
correlation function, T (r), and the second yields the A–A
component correlation function. Figure 7(a) shows the neutron
diffraction pattern for two of the five wavelengths used in
this experiment, i.e. 0.9 Å (upper curve) and 0.45 Å (bottom
curve). The big difference in the measured intensity is caused
by the energy dependence of the absorption cross section and
the different Q-range is due to the fixed angular range of the
diffractometer [17], i.e. 140◦. Figure 7(b) shows the T (r)

function for these two wavelengths and their difference �T (r),
from which the Sm–Sm + Sm–X contributions (X = P or O)
are derived. For the present glass, these correlations reveal that
the Sm3+ ions have an average coordination number, nSm(O) =
7, with a mean Sm–O bond length of 2.3757 ± 0.005 Å, while
the anomalous difference correlation function indicates that the
Sm3+ ions are ≈4.6 Å apart.

4.5. Rare-earth phosphate glasses

This is an example where the method of isomorphic
substitution in neutron diffraction is applied to investigate
the effect of rare-earth ion size on the structure of two
(R2O3)–(Al2O3)–(P2O5) glasses prepared by using the same
method. Specifically, neutron diffraction is used to study
the structure of glassy RAl0.30P3.05O9.62, which contains small
R3+ ions (Dy3+ or Ho3+) of radius 0.91–0.90 Å [29], and
glassy RAl0.34P3.20O10.04, which contains large R3+ ions (La3+

or Ce3+) of radius 1.16–1.14 Å [30]. Isomorphic structures
are assumed to result from the Dy/Ho or La/Ce substitution
and difference function methods are then employed to
separate, essentially, those correlations involving R3+ from the
remainder [31]. Figure 8 shows the static structure factors for
the six samples: that of LaAl0.36P3.32O10.25 has been measured
at GLAD [22] and the other at D4 [17]. The results show a rich
structural complexity, which can be rationalized on the basis of
the Hoppe et al model [32, 33] by treating both R3+ and Al3+
as network modifying cations.

Figure 8. The static structure factors of glassy rare-earth phosphates.
The three bottom curves correspond to the smaller rare earths
(Dy and Ho), while the three top curves correspond to larger rare
earths (La and Ce).

5. Conclusions

This article shows that, despite the complexity involved in
the studies of short-range order in disorder materials, the
use of special techniques allows us to extract the local
structure around a given atom. The main difficulty in
solving the structure of amorphous materials is that all the
spatial correlations are collapsed in the same one-dimensional
diffractogram. In general, neutron diffraction is the main
tool to study the structure of glasses, thanks to the isotopic
substitution method. Here it was shown that other less-
conventional techniques can be very useful, such as isomorphic
substitution, anomalous dispersion or combination of neutron
and x-ray data. These same techniques can also be used
to study liquids [3, 5, 6], solutions [34, 35] or even solid
minerals [36, 37], where the order around a given atom is
important.

This article was focused on the structural study of
amorphous systems, but it is worth noticing that the main
characteristic of thermal neutrons is that they allow us to
study simultaneously the structure and dynamics of amorphous
systems [16]. It is necessary to note that for dynamical studies
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the techniques of isotopic or isomorphic substitution must be
used carefully, due mainly to the difference in the mass of the
substituted atoms.
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